Effects of decoherence and imperfections for quantum algorithms
نویسندگان
چکیده
We study effects of static inter-qubit interactions and random errors in quantum gates on the stability of various quantum algorithms including the Grover quantum search algorithm and the quantum chaos maps. For the Grover algorithm our numerical and analytical results show existence of regular and chaotic phases depending on the static imperfection strength ε. The critical border εc between two phases drops polynomially with the number of qubits nq as εc ∼ n −3/2 q . In the regular phase (ε < εc) the algorithm remains robust against imperfections showing the efficiency gain εc/ε for ε > 2 q. In the chaotic phase (ε > εc) the algorithm is completely destroyed. The results for the Grover algorithm are compared with the imperfection effects for quantum algorithms of quantum chaos maps where the universal law for the fidelity decay is given by the Random Matrix Theory (RMT). We also discuss a new gyroscopic quantum error correction method which allows to reduce the effect of static imperfections. In spite of this decay GYQEC allows to obtain a significant gain in the accuracy of quantum computations.
منابع مشابه
Decoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملQuantum pathology of static internal imperfections in flawed quantum computers
Even in the absence of external influences the operability of a quantum computer (QC) is not guaranteed because of the effects of residual one– and two–body imperfections. Here we investigate how these internal flaws affect the performance of a quantum controlled-NOT (CNOT) gate in an isolated flawed QC. First we find that the performance of the CNOT gate is considerably better when the two–bod...
متن کاملDissipative decoherence in the Grover algorithm
Using the methods of quantum trajectories we study effects of dissipative decoherence on the accuracy of the Grover quantum search algorithm. The dependence on the number of qubits and dissipation rate are determined and tested numerically with up to 16 qubits. As a result, our numerical and analytical studies give the universal law for decay of fidelity and probability of searched state which ...
متن کاملQuantum chaos algorithms and dissipative decoherence with quantum trajectories.
Using the methods of quantum trajectories we investigate the effects of dissipative decoherence in a quantum computer algorithm simulating dynamics in various regimes of quantum chaos including dynamical localization, the quantum ergodic regime, and quasi-integrable motion. As an example we use the quantum sawtooth algorithm which can be implemented in a polynomial number of quantum gates. It i...
متن کاملTeleportation via an Entangled Coherent Channel and Decoherence Effect on This Channel
We study an entangled two-mode coherent state within the framework of2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation ofa superposition coherent state via an entangled coherent channel. By three differentmeasures with the titles ``minimum assured fidelity (MASF)”, ``average teleportationfidelity” and ``optimal fidelity (f)” we study the ...
متن کامل